Geometria Espacial 4n5dk

A Geometria Espacial é a área da Matemática que estuda os objetos geométricos em três dimensões. Nela, aprendemos sobre os sólidos geométricos e suas propriedades. 1j4j

A Geometria Espacial é a Geometria considerando três dimensões, ou seja, é a Geometria no espaço. Vivemos em um mundo tridimensional e estamos cercados de objetos geométricos, como os conhecidos sólidos geométricos, os poliedros, os corpos redondos, entre outros. Na Geometria Espacial é possível compreender melhor as formas geométricas que possuem três dimensões, uma vez que seus estudos são voltados a elas. 5g406b

Leia também: Geometria Analítica — a Geometria que estuda as formas e sólidos geométricos com o auxílio da Álgebra

Resumo sobre Geometria Espacial 2u5t7

  • A Geometria Espacial é o estudo de objetos geométricos no espaço, ou seja, em um universo tridimensional.

  • O ponto, a reta, o plano e o espaço são conceitos importantes para a Geometria Espacial.

  • Na Geometria Espacial estudamos os sólidos geométricos, como os poliedros e os corpos redondos.

  • Na Geometria Espacial existem fórmulas importantes envolvendo os sólidos geométricos, como o cálculo do volume e da área total.

  • Diferentemente da Geometria Espacial, a Geometria Plana estuda objetos no plano, ou seja, com duas dimensões. Ela é a base da Geometria Espacial.

O que a Geometria Espacial estuda? 3n2z1g

A Geometria Espacial estuda as figuras espaciais conhecidas como sólidos geométricos. O cubo, o cilindro, o cone, as pirâmides, entre outros, são objetos de estudo da Geometria Espacial. Por meio da Geometria Espacial é possível descobrir as características e propriedades dos sólidos geométricos, e também é possível desenvolver fórmulas para o cálculo de volume e de área desses sólidos.

Conceitos importantes da Geometria Espacial 26nk

Para compreender a Geometria Espacial, é importante conhecer os elementos primitivos, que são: o ponto, a reta, o plano e o espaço. Os elementos primitivos são assim chamados por serem a base da Geometria e não possuírem uma definição, entretanto, todos temos uma intuição sobre cada um deles.

→ Ponto 2u5i1f

Os pontos são representados por letras maiúsculas do nosso alfabeto e são o primeiro elemento primitivo da Geometria. O ponto não possui nenhuma dimensão, ou seja, é adimensional.

Representação de dois pontos.
Representação de dois pontos.

→ Reta 263c4f

A reta é o segundo elemento primitivo, representado por letras minúsculas do alfabeto (por exemplo, r). A reta possui infinitos pontos colineares e uma única dimensão.

 Representação de três retas.
 Representação de três retas.

→ Plano ur5x

O plano é o terceiro elemento primitivo. Ele é representado por letras do alfabeto grego, como α, β, entre outras. O plano possui duas dimensões.

Representação de um plano.
Representação de um plano.

→ Espaço 4l5s3t

O espaço possui três dimensões. Podemos representar o espaço quando temos três eixos reais, um para cada dimensão, como na imagem a seguir:

 Representação do espaço.
 Representação do espaço.

Veja também: Posição relativa entre reta e plano

Principais figuras da Geometria Espacial 2y125c

As figuras da Geometria Espacial são conhecidas como sólidos geométricos. Os sólidos geométricos são divididos em dois grupos: os poliedros e os corpos redondos.

→ Poliedros 4m6514

Os poliedros são os sólidos geométricos que possuem faces formadas por polígonos, como o cubo, as pirâmides e os prismas.

◦ Sólidos de Platão 4e3m50

Os sólidos de Platão são poliedros que possuem todos as faces congruentes. São classificados como sólidos de Platão o tetraedro, o hexaedro, o octaedro, o dodecaedro e o icosaedro. Todos esses cinco sólidos são poliedros regulares, ou seja, possuem arestas e faces congruentes.

Os sólidos de Platão.
Os sólidos de Platão.

→ Corpos redondos 2g4j2m

Os corpos redondos são os sólidos geométricos que possuem formas arredondadas. Os principais corpos redondos são a esfera, o cone e o cilindro.

Representação de uma esfera, de um cilindro e de um cone.
A esfera, o cilindro e o cone são corpos redondos.

Principais fórmulas da Geometria Espacial 2i6913

No estudo da Geometria Espacial são desenvolvidas fórmulas específicas para calcular o volume e a área total dos sólidos geométricos.

→ Fórmulas do prisma 6y6b11

Prisma.

Para calcular o volume do prisma, é necessário conhecer a área da sua base e a sua altura. Já a área total do prisma é calculada utilizando a área da base e a área lateral. As fórmulas do volume, representado por V, e da área total, representada por \(A_t\), são:

V = Ab· h

At = 2Ab + Al

  • Ab → área da base.

  • Al → área lateral.

  • H → altura.

→ Fórmulas da pirâmide 13u24

Representação de uma pirâmide.
Pirâmide.

Assim como o prisma, as fórmulas de volume e área total da pirâmide dependem da sua área da base, da área lateral e da altura.

\(V=\frac{A_b⋅h}3\)

\(A_t=A_b+A_l\)

→ Fórmulas do cilindro 6q3v4l

Representação de um cilindro.
Cilindro.

Para calcular o volume e a área total do cilindro, é necessário conhecer o comprimento da altura e do raio do cilindro.

V = πr² · h

At = 2πr (r + h)

  • r → raio.

→ Fórmulas do cone 1c1b4v

Representação de um cone.
Cone.

O cone, além da fórmula do volume e da área total, tem também a fórmula da geratriz, que relaciona seu raio e sua altura.

\(V=\frac{π⋅r^2⋅h}3\)

g² = r² + h²

At = πr (r + g)

  • g → geratriz do cone.

→ Fórmulas da esfera 6i5s5k

Representação de uma esfera.
Esfera.

Para calcular o volume e a área total da esfera, é necessário conhecer somente o comprimento do seu raio.

\(V=\frac{4πr^3}3\)

At = 4πr²

Saiba mais: Relação de Euler — a relação usada para relacionar o número de faces, vértices e arestas de poliedros convexos

Diferença entre Geometria Espacial e Geometria Plana 2yg3e

A diferença entre a Geometria Espacial e a Geometria Plana é que a Geometria Espacial é tridimensional e a Geometria Plana é bidimensional. Ambas possuem grande importância para o desenvolvimento da Geometria, e a Geometria Plana é base para a Geometria Espacial.

Representação dos polígonos de três a dez lados.
A Geometria Plana estuda figuras com duas dimensões.

Exercícios resolvidos sobre Geometria Espacial 3jb1z

Questão 1

Das figuras geométricas as seguir, marque a alternativa que contém uma figura que não é espacial.

A) Pirâmide

B) Cilindro

C) Cubo

D) Circunferência

E) Prisma

Resolução:

Alternativa D

Nas alternativas, a única figura geométrica que não é espacial, ou seja, não possui 3 dimensões, é a circunferência.

Questão 2

(Enem 2011) A figura seguinte mostra um modelo de sombrinha muito usado em países orientais.

Representação do tipo de sombrinha usada nos países orientais.

Esta figura é uma representação de uma superfície de revolução chamada de

A) pirâmide.

B) semiesfera.

C) cilindro.

D) tronco de cone.

E) cone.

Resolução:

Alternativa E

A superfície da sombrinha possui o formato de um cone.

 

Por Raul Rodrigues de Oliveira
Professor de Matemática


Fonte: Brasil Escola - /matematica/geometria-espacial.htm